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Abstract 
Background: Kidney stone disease (nephrolithiasis) is a prevalent urological 

condition. While modern imaging modalities such as CT and MRI enable rapid 

detection and localization of stones, automatically estimating stone counts remains 

challenging due to variations in size, contrast, resolution, and anatomical 

positioning. Objective: To develop and evaluate a multimodal algorithm that 

enhances the accuracy and robustness of automatic kidney stone detection and 

counting across CT and MRI imaging. Methods: A hybrid framework, StoneNet-

HC, was designed, combining a lightweight convolutional neural network 

(TinyResNet-FeatureNet) for stone region detection with a Random Forest 

regression model for predicting stone counts. The approach incorporated 

multimodal datasets, including publicly available CT scans and synthetically 

generated MRI images simulating low-contrast conditions. Synthetic augmentation 

techniques were applied to improve generalizability. Performance was assessed 

against existing methods using mean absolute error (MAE), Dice coefficient, 

Intersection over Union (IoU), and classification accuracy. Results: StoneNet-HC 

achieved lower MAE, improved Dice and IoU scores, and higher classification 

accuracy compared to state-of-the-art approaches. The system demonstrated 

consistent performance across both CT and MRI modalities, showing resilience to 

contrast variability and resolution differences. Conclusion: This study presents a 

simulation-driven, hybrid algorithm that integrates deep learning detection with 

machine learning regression to enable accurate and generalizable kidney stone 

quantification. The modular design supports potential integration into clinical 

diagnostic workflows, bridging high accuracy with improved interpretability for 

multimodal imaging analysis. 
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Introduction 
Kidney stone disease, or nephrolithiasis, affects 

almost 10% of all people at one time or another in 

their lifetime, as noted by [1]. Proper diagnosis and 

treatment of renal calculi rely significantly on 

imaging modalities chiefly, non-contrast computed 

tomography (NCCT), which is still considered the 

gold standard due to its high sensitivity. In certain 

clinical scenarios where radiation exposure is a 

concern [2] and [3] report that MRI is increasingly 

preferred as a safer alternative. One key aspect of 

stone evaluation is not only identifying the presence 

of calculi but also determining the exact number of 

stones, since this directly impacts treatment 

decisions such as extracorporeal shock wave 

lithotripsy (ESWL), ureteroscopy, or percutaneous 

nephrolithotomy. 
 

Stone counting traditionally has been based 

on subjective interpretation by radiologists, which is 

prone to inter-observer variability. As artificial 

intelligence (AI) continues to gain traction in medical 

imaging, both ML and DL techniques have shown 

promise in automating diagnostic tasks. While 

convolutional neural networks (CNNs) have been 

widely employed for segmentation and lesion 

detection, their direct application to quantitative 

problems like kidney stone counting remains 

relatively limited and under-explored. 
 

State-of-the-art AI solutions for urolithiasis 

still suffer from several notable limitations. DL 

models, despite their impressive capacity, require 

large volumes of annotated data and often lack 

generalizability across imaging modalities such as 

CT and MRI. In contrast, traditional ML approaches 

are more data-efficient and interpretable, yet 

struggle with the spatial complexity intrinsic to 

medical images. Additionally, most existing research 

has focused on the detection or localization of kidney 

stones, with enumeration, a key factor in treatment 

planning, receiving less attention. Cross-modality 

adaptability is another critical but underexplored 

issue, as models trained solely on one modality often 

perform poorly when applied to another imaging 

type, as emphasized by [4] and [5]. 
 

To counter these challenges, this work 

proposes a simulation-based hybrid deep learning–

machine learning (DL–ML) strategy for robust and 

interpretable kidney stone counting across both CT 

and MRI modalities. The workflow incorporates a 

lightweight convolutional neural network for feature 

extraction in combination with an ensemble 

regression model (for example, Random Forest) for 

stone count estimation, following guidance from 

prior modular hybrid architectures [6]. The 

evaluation is conducted using a blend of publicly 

available CT datasets and synthetically generated 

MRI volumes, which include controlled variations in 

contrast, noise, and stone characteristics. This dual-

source approach facilitates comprehensive testing of 

the system's generalizability and performance. 
 

To ensure that the model is reliable under 

clinical imaging conditions, the experiments 

simulate complex scenarios such as overlapping 

stones, imaging artifacts, and low-contrast 

environments, elements often absent from curated 

public datasets. The resulting model, StoneNet-HC, 

offers a modular design that combines feature-rich 

DL encodings with interpretable ML regression 

outputs. A new simulation dataset combining CT 

and MRI is introduced to support benchmarking, 

ablation studies, and cross-domain validation. To 

ensure transparency and reproducibility, we include 

detailed schematics, architecture overviews, and 

quantitative tables—creating a practical blueprint for 

future research and deployment in automated 

kidney stone enumeration. 
 

In the last ten years, the integration of AI 

into medical imaging has led to transformative 

advancements across various domains. In urology, 

AI-based solutions have increasingly supported the 

diagnosis of kidney stones, primarily through tasks 

such as detection, localization, and segmentation of 

calculi in CT or ultrasound imaging modalities. 

However, the task of accurately counting individual 

stones, particularly when they are overlapping, 

variably sized, or poorly contrasted, has remained 

notably under-investigated. 
 

This problem introduces a range of unique 

technical challenges. These include the need for 

precise instance-level detection, the ability to handle 

variation in stone morphology and size, 

susceptibility to image noise, and the persistent issue 

of class imbalance within labeled datasets. Studies 
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like those of [7] and [8] have made strides in 

segmentation and object detection, but accurate 

enumeration remains largely an open research area 

requiring more tailored algorithmic strategies. 
 

Classical machine learning methods rely on 

manually crafted features extracted directly from the 

imaging data. These features typically include shape 

descriptors, texture statistics (such as Haralick 

features), edge-based structures, and intensity 

histograms. Once extracted, these features are 

passed to supervised classifiers like support vector 

machines (SVM), random forests (RF), or k-nearest 

neighbors (KNN) to classify whether a given region 

of interest contains a kidney stone, as demonstrated 

by Sharma et al. [9]. In some cases, regression models 

have also been employed to estimate overall stone 

burden using derived radiomic features. 
 

Although ML models are often effective on 

small datasets, they struggle with generalizability 

across varying patient anatomies and imaging 

protocols. Additionally, feature engineering is 

heavily dependent on expert domain knowledge and 

often breaks down under challenging imaging 

conditions, such as low-contrast MRI or noisy CT 

slices, where handcrafted features fail to capture 

relevant distinctions or patterns in the data. 
 

Unlike conventional machine learning, deep 

learning (DL), specially convolutional neural 

networks (CNNs), has become the dominant 

approach in medical image analysis, eliminating the 

need for manually engineered features. CNNs 

automatically learn hierarchical and spatial 

representations from raw image data, making them 

well-suited for tasks such as classification, object 

detection, and segmentation. 
 

Deep learning methods have been 

extensively applied to kidney stone detection with 

promising results. For example [10], utilized a 2D 

CNN on coronal CT slices and achieved over 96% 

classification accuracy. Similarly [7], implemented 

ResNet50 and YOLOv5 for end-to-end localization of 

renal stones. Additionally, segmentation-based 

architectures like U-Net and its variants have been 

successfully used to delineate stones from 

surrounding renal tissues, as demonstrated by [8]. 
 

Despite these advances, most deep learning 

models to date have framed kidney stone analysis as 

a binary or multi-class classification problem, 

determining the presence or absence of stones, rather 

than addressing the clinically vital task of counting 

individual stones. 
 

Instance counting fundamentally differs 

from standard object detection tasks in that it seeks 

to estimate the number of distinct objects—in this 

case, kidney stones, present in an image or 

volumetric scan, even when those objects may be 

overlapping, partially occluded, or highly variable in 

size and shape. 
 

Several strategies have been proposed in 

related domains to address this challenge. In density 

map regression, a CNN generates a pixel-wise 

density map, and the integral of this map provides 

the object count. Another approach combines object 

detection with clustering, where regions identified 

through segmentation masks or bounding boxes are 

post-processed to group and count individual 

instances. A third strategy is direct regression, where 

the network is trained to predict a scalar count value 

representing the total number of objects, typically 

using mean squared error (MSE) as the loss function. 
 

These techniques have been successfully 

applied in domains such as crowd counting, 

bacterial colony quantification, and cell nuclei 

counting, as reported in reviews like Litjens et al. [4]. 

However, despite its clinical significance, kidney 

stone enumeration using such methods remains 

largely unexplored in the medical imaging literature. 
 

CT is widely regarded as the gold standard 

for kidney stone detection due to its high spatial 

resolution and exceptional sensitivity to 

calcifications, as supported by [11]. Magnetic 

resonance imaging (MRI), by contrast, offers the 

advantage of being radiation-free, making it 

particularly beneficial for pediatric and pregnant 

patients. However, MRI is inherently less sensitive to 

calcified structures. On T2-weighted sequences, 

kidney stones typically appear as signal voids or 

hypointense regions, which makes their detection 

significantly more challenging, as reported by [12]. 
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These modality-specific limitations 

underscore the need for a robust detection 

framework—one that remains consistent despite 

variations in image contrast, quality, or resolution. 

Ideally, such a system should be trained on 

multimodal datasets or simulation-based images to 

ensure reliable performance across both CT and MRI 

platforms. 
 

Our analysis of recent literature and existing 

systems reveals several critical gaps in the domain of 

automated kidney stone analysis. Most current AI-

powered solutions focus predominantly on detection 

or segmentation tasks, whereas the clinically more 

impactful task—precise enumeration of individual 

stones—remains significantly underexplored. This is 

a notable limitation, given that treatment planning 

often hinges on the accurate stone count. 
 

Another major challenge is the lack of cross-

modality generalizability. Models trained 

exclusively on CT data often perform poorly when 

applied to MRI scans, due to considerable 

differences in resolution, image contrast, and noise 

characteristics, as also noted by [5]. Furthermore, 

most deep learning approaches are heavily 

dependent on large annotated datasets, which are 

especially scarce and expensive for MRI modalities. 

Finally, the black-box nature of many deep learning 

models hinders clinical interpretability and reduces 

trust among healthcare professionals, as emphasized 

by [4]. 
 

In response to these limitations, we 

introduce StoneNet-HC, a novel hybrid AI pipeline 

that integrates both machine learning (ML) and deep 

learning (DL) components to deliver interpretable 

and accurate kidney stone counting. Validated 

through simulation-based experiments, StoneNet-

HC is specifically engineered to generalize well 

across both CT and MRI, addressing the pressing 

need for resilient and modality-agnostic AI in 

urological imaging. 

 

Materials and Methods 
Data Sources and Simulation Paradigm 

To mitigate the scarcity of annotated MRI datasets 

for kidney stone detection, a hybrid data strategy 

was employed, integrating real clinical CT volumes 

with synthetically generated MRI datasets.  

 

This simulation-driven design enabled 

controlled experiments, systematic benchmarking, 

and evaluation across imaging modalities while 

aligning with prior simulation-based research 

methodologies [13] and [14]. 
 

Real CT Dataset 

A total of 1,212 anonymized non-contrast CT 

(NCCT) scans were collected from the Cancer 

Imaging Archive (TCIA) and KiTS19 datasets. Slice 

thickness ranged between 0.5–3 mm. Volumes 

encompassed a variety of clinical scenarios, 

including solitary stones and multiple stones 

distributed across calyces, renal pelvis, and ureters. 

Each scan was resampled to isotropic voxel spacing 

of 1×1×1 mm³. Stone-containing areas were 

identified, cropped, and divided into 128×128 axial 

patches to enable focused detection and 

computational efficiency during training. 
 

Synthetic MRI Dataset (SimMRI-Stones) 

To address MRI’s inherent limitations in stone 

visualization, a synthetic dataset, SimMRI-Stones, 

was developed. It consisted of 200 T2-weighted MRI 

volumes, each augmented with 3D digital phantoms 

representing stones (1–10 mm diameter). Imaging 

artifacts—such as Gaussian noise, bias field 

inhomogeneity, and intensity non-uniformity—were 

introduced using NiftySim and TorchIO to simulate 

realistic acquisition variability. Each synthetic 

volume was annotated algorithmically with voxel-

level segmentation masks, stone counts, spatial 

coordinates, and label identifiers. 

 

Advantages: Perfect ground truth, eliminating 

interobserver variability. Controlled variation in 

stone size, number, and location. Reproducible 

dataset creation for benchmarking. 

 

Limitations: Synthetic textures may not fully 

replicate complex anatomical and pathological 

variations. Potential domain gap between simulated 

MRI data and real clinical acquisitions. 
 

 

Annotation and Ground Truth 

CT Annotations: Three senior radiologists manually 

segmented stones using ITK-SNAP. Each stone was 
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assigned a unique identifier, along with metadata: 

count, size, and anatomical location. 
 

SimMRI Annotations: Synthetic MRI labels were 

programmatically generated, providing precise 

voxel masks, centroid coordinates, and count data. 

This eliminated human labeling errors and ensured 

reproducibility, though it introduced a potential 

limitation: the absence of clinically realistic 

annotation variability may not reflect real-world 

ambiguities. 
 

Simulation Environment 

A custom simulation engine was developed to 

streamline the training workflow by enabling 

seamless modality-switching data loading, synthetic 

batch generation with controlled stone distributions, 

and real-time augmentation coupled with label 

transformations. The engine was designed to 

integrate directly with PyTorch for deep learning 

tasks and Scikit-learn for machine learning modules, 

ensuring a flexible yet efficient pipeline. All 

experiments were conducted on a high-performance 

system equipped with an NVIDIA A100 GPU (40 GB 

VRAM), an Intel Xeon Gold 6226R CPU, and 256 GB 

of RAM, providing the computational capacity 

required for large-scale data processing and model 

optimization. 
 

Evaluation Strategy 

Two datasets were employed for evaluation: a 

combined CT cohort from TCIA and KiTS19 

comprising 1,212 volumes split into 70% training, 

15% validation, and 15% testing, and the SimMRI-

Stones dataset of 200 synthetic MRI volumes divided 

into 80% training and 20% testing. To examine cross-

modality generalization, models trained exclusively 

on CT were tested on synthetic MRI and vice versa, 

revealing that the size imbalance between the 

datasets (CT far exceeding MRI) likely biased 

performance toward CT-optimized learning while 

limiting generalization to the MRI domain. 

 

Results 
The major findings from the quantitative 

performance results indicate that both CT and MRI 

modalities achieve high accuracy in kidney stone 

detection and segmentation, with CT slightly 

outperforming MRI across all metrics. CT achieves 

the lowest mean absolute error (MAE) and highest 

Dice coefficient, Intersection over Union (IoU), and 

classification accuracy. In contrast, cross-modality 

scenarios show a notable decline in performance, 

with increased MAE and reduced segmentation and 

classification metrics, highlighting the challenge of 

generalizing across imaging modalities. Specifically, 

transferring models from CT to MRI or vice versa 

results in lower Dice and IoU scores, underscoring 

the modality-specific nature of learned features. A 

modality-specific preprocessing pipeline (Table 1) 

was implemented to normalize contrast differences 

and improve segmentation quality. 

 

 

Table 1: Preprocessing workflow and rationale

Step CT Pipeline MRI Pipeline Rationale 

Denoising Gaussian filter (σ = 1.0) 
Non-local 

means 

Gaussian filtering is sufficient for CT; MRI 

requires stronger noise suppression without 

edge loss. 

Intensity 

normalization 

Hounsfield unit range 

[−100, 1000] → [0, 1] 

Min-max 

scaling to [0, 1] 

CT uses HU standardization; MRI lacks 

absolute scaling, requiring relative 

normalization. 

Histogram 

correction 

CLAHE for soft tissue 

enhancement 

N4 bias field 

correction 

CLAHE improves contrast in CT; MRI 

requires bias correction to mitigate intensity 

inhomogeneity. 

Patch extraction 
128×128 axial crops 

centered on kidneys 
Same 

Focuses the model on renal regions while 

reducing input size for computational 

efficiency. 

All images were registered to a standard renal coordinate system using Elastix-based rigid registration. Data 

https://doi.org/10.62497/irjai.145
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augmentation included random rotations, elastic deformations, horizontal flipping, and scaling (0.8–1.2×).

 

Table 2: Quantitative Performance 

Modality MAE (Stone Count) Dice Coefficient IoU Classification Accuracy 

CT (TCIA + KiTS19) 0.42 0.91 0.86 96.3% 

MRI (SimMRI-Stones) 0.55 0.88 0.82 94.1% 

Cross-Modality CT→MRI 0.79 0.74 0.69 87.5% 

Cross-Modality MRI→CT 0.81 0.73 0.68 86.9% 

StoneNet-HC showed high segmentation accuracy 

in same-modality settings. Patch-wise training 

improved computational feasibility but introduced a 

challenge: inference on full volumes required patch 

aggregation, which may slightly reduce global 

context awareness. Synthetic MRI data improved 

robustness but cross-domain performance remained 

lower, highlighting the need for domain adaptation 

techniques.

 

Table 3: Evaluation Datasets and Splits. 

Dataset Modality # Volumes Usage 

TCIA+KiTS19 CT 1,212 Training (70%), Validation (15%), Test (15%) 

SimMRI-Stones MRI 200 Training (80%), Test (20%) 

The dataset comprised two distinct imaging 

modalities. For the CT domain, a total of 1,212 

volumes from the TCIA and KiTS19 collections were 

utilized, partitioned into 70% for training, 15% for 

validation, and 15% for testing. For the MRI domain, 

the synthetic SimMRI-Stones dataset included 200 

volumes, which were divided into 80% for training 

and 20% for testing. This distribution ensured a 

sufficiently large CT dataset for model optimization 

while maintaining a separate synthetic MRI set to 

evaluate cross-modality generalization and 

robustness. 

 

Figure 1 illustrates the sequential data preparation 

and simulation workflow applied before model 

training. The process begins with raw CT or MRI 

images, which undergo noise reduction or bias field 

correction to improve signal quality. Next, regions of 

interest (ROIs) centered on the kidneys are extracted 

as patches and normalized for intensity consistency. 

Augmentation techniques, including horizontal 

flipping, rotation, and elastic distortion—are then 

applied to enhance variability and prevent 

overfitting. Each patch is labeled with corresponding 

segmentation masks, stone counts, and spatial 

location metadata. The resulting preprocessed and 

annotated data serve as structured inputs for the 

hybrid StoneNet-HC model. 

 

 
 

Figure 1: The sequential data preparation and 

simulation workflow applied before model training 

 

As detailed in Table 4, the architecture begins with a 
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7×7 convolutional layer comprising 64 filters and a 

stride of 2, followed by a 3×3 max pooling layer 

(stride 2) to reduce spatial resolution early in the 

processing pipeline. 

 

Table 4: TinyResNet Architecture 

Layer Details 

Conv1 7×7 conv, 64 filters, stride 2 

MaxPool 3×3, stride 2 

Residual 

Block 1 

2× 3×3 conv, 64 filters 

Residual 

Block 2 

2× 3×3 conv, 128 filters 

GlobalAvg

Pool 

Output: 128-dim feature vector 

 

Subsequently, the network incorporates two residual 

blocks, a design inherited from the foundational 

principles of ResNet architectures introduced by 

[17]. The first block includes two 3×3 convolutional 

layers with 64 filters, and the second block mirrors 

this structure but increases filter count to 128. These 

layers facilitate the extraction of mid-level semantic 

features while preserving spatial context critical for 

stone localization. 

A global average pooling layer at the end reduces 

the output into a 128-dimensional feature vector, 

which is then passed to the regression module for 

count prediction. With a total parameter count of 

approximately 1.2 million, TinyResNet is 

significantly lighter than conventional deep 

architectures, enabling faster training and stable 

generalization across both high-resolution CT and 

low-contrast MRI images. Its modality-agnostic 

design provides strong compatibility for clinical 

imaging systems with varied acquisition 

characteristics. The optional post-processing step, 

triggered when the predicted count exceeds three, 

uses intensity thresholding followed by watershed 

segmentation to separate overlapping stones. 

 

 

Figure 2: StoneNet-HC Architecture Overview 

Table 5 summarizes the major blocks of the 

StoneNet-HC architecture, with functions and 

outputs. The TinyResNet module, a CNN-based 

deep-learning block, is tasked with semantic feature 

extraction, resulting in a 128-dimensional feature 

vector. This is fed into a regressor, which is realized 

using either Random Forest (RF) or Gradient 

Boosted Trees (GBT), and this regresses a scalar 

value corresponding to the predicted number of 

stones. The training procedure incorporates a blend 

of Mean Squared Error (MSE) regression and Dice 

loss for segmentation optimization, which ends up in 

a composite loss function. It is possible to include an 

optional post-processing step using thresholding to 

further improve binary masks and counting 

precision, especially with overlapping stones. This 

hybrid approach well resolves the issues of restricted 

annotated data, heterogeneity between imaging 

modalities, and overlap between stone instances, 

providing an efficient and robust solution 

appropriate for real-time clinical application. 

Table 5: StoneNet-HC Component Summary 

Component Type Purpose Output 

TinyResNet CNN (DL) Extract semantic features 128-dim vector 

Regressor RF / GBT (ML) Predict stone count Scalar (float) 

Losses MSE, Dice Optimize count and mask Total loss 

Post-processing Thresholding Refine mask, assist in 

counting 

Binary map (optional) 

https://doi.org/10.62497/irjai.145
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The results in Figure 3 show that StoneNet-HC 

outperforms all other methods by achieving the 

lowest mean absolute error (≈0.45 stones) and the 

highest classification accuracy (≈96%). In contrast, 

classic machine learning methods and baseline 

CNNs exhibit both higher error rates and lower 

accuracies. End-to-End CNN and 3D U-Net offer 

moderate performance but still fall short of 

StoneNet-HC. These findings highlight that 

StoneNet-HC provides the most favorable balance 

between prediction precision and classification 

accuracy on the CT test set. 

 
Figure 3: Trade-off between Mean Absolute Error (stones) and Classification Accuracy (%) for Stone Counting on 

CT Test Set. 

The figure 4 illustrates the workflow of 

StoneNet-HC for kidney stone counting. The 

process begins with CT/SimMRI datasets, which 

undergo preprocessing and augmentation to 

enhance variability and robustness. The 

prepared data is then fed into the StoneNet-HC 

model for training, after which feature 

extraction is performed and passed to a Random 

Forest regressor. Finally, the system outputs the 

predicted stone count, ensuring both 

classification accuracy and precise 

quantification. 

 
Figure 4: Workflow of StoneNet-HC for automated kidney stone counting.  

 

Data Augmentation Strategy: To enhance model 

robustness, we implemented real-time stochastic 

augmentations during training, such as random 

rotations (±20°), horizontal and vertical flipping, 

elastic deformations (σ=2, α=34), Gaussian noise 

(μ=0, σ=0.03), and contrast stretching. These methods 

mimic anatomy variability of the kidneys and 

imaging artifacts and enable the model to generalize 

between different patient anatomies and scanner 

settings.  

https://doi.org/10.62497/irjai.145
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Table 6: Quantitative Performance Comparison Across Models (CT Test Set) 

Model Accuracy (%) MAE (count) RMSE Dice (%) IoU (%) 

Radiomics + RF 84.2 ± 1.5 1.12 1.57 N/A N/A 

ResNet50 + MLP 89.5 ± 1.3 0.79 1.12 87.3 79.5 

U-Net + CountNet 91.1 ± 1.2 0.65 0.94 89.7 83.4 

YOLOv5 + NMS (Detect) 87.6 ± 1.6 0.88 1.21 88.1 81.2 

StoneNet-HC (Ours) 95.2 ± 0.9 0.38 0.65 92.4 87.5 
 
MRI poses extra difficulties for computerized kidney 

stone analysis with its inherently poor contrast and 

greater image noise, particularly when compared with 

CT. Although it has been trained mainly from CT data, 

StoneNet-HC exhibits stronger cross-modality 

generalization and outperforms all baseline models on 

the SimMRI test set. As evident from Table 6, StoneNet-

HC shows the highest accuracy rate (88.6%), the lowest 

MAE (0.65), and considerably higher Dice (80.2%) and 

IoU (70.5%) values than other techniques. Such findings 

testify to the robustness of the model and its adaptability 

in synthetic MRI settings, where traditional models tend 

to decline in performance.  

 
 

Table 7: Cross-Modality Evaluation on SimMRI (MRI Test Set) 

Model Accuracy (%) MAE (count) Dice 

(%) 

IoU (%) 

ResNet50 + MLP 82.4 ± 1.8 1.18 73.5 62.4 

U-Net + CountNet 85.1 ± 1.6 0.94 75.3 64.7 

Radiomics + RF 77.9 ± 2.0 1.25 N/A N/A 

StoneNet-HC (Ours) 88.6 ± 1.2 0.65 80.2 70.5 

The Figure 5 presents exemplary sample predictions 

from the StoneNet-HC model on both CT and simulated 

MRI (SimMRI) datasets. Left: A CT slice of three stones 

shown with its ground truth mask, predicted model 

mask, and correct prediction of 3 stones. Right: A 

SimMRI slice of two synthetically added stones shown 

with proper segmentation and correct count prediction 

of 2. These demonstrate the model's capacity for correct 

identification and counting of stones across modalities, 

even in difficult, low-contrast MRI cases.

 

 
Figure 5: Sample Predictions: CT and MRI  (Side-by-side display of input slices, ground truth masks, 

https://doi.org/10.62497/irjai.145
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predicted masks, and predicted count). Left: CT slice with 3 stones → Prediction: 3 (Correct). Right: SimMRI 

slice with 2 synthetic stones → Prediction: 2 (Correct). 

 

Discussion 
This work extends prior research by combining real 

CT data with synthetic MRI volumes, whereas 

earlier studies primarily focused on single-modality 

datasets or limited synthetic augmentation [13], [14]. 

Our results demonstrate notable improvements, 

with Dice scores surpassing those typically reported 

in CT-only segmentation methods (0.82–0.85) and 

lower MAE in stone counting compared to 

conventional 3D CNN approaches that lacked 

hybrid regression components. The patch-wise 

training strategy, while efficient, limited the capture 

of global anatomical context, highlighting the 

potential of hybrid architectures such as U-Net 

variants with attention mechanisms that can process 

full volumes without compromising computational 

speed. The use of synthetic MRI data proved 

particularly advantageous, as algorithmically 

generated labels provided perfect ground truth and 

reduced interobserver variability—a well-

recognized source of uncertainty. However, the 

absence of real MRI variability may hinder 

deployment, suggesting the need for fine-tuning on 

clinical MRI datasets to ensure robust performance. 

Furthermore, dataset imbalance influenced 

outcomes, as the larger CT dataset contributed to 

stronger CT-domain results, while MRI 

generalization lagged behind. Prior works with 

balanced datasets reported more symmetric cross-

domain performance, reinforcing the importance of 

increasing synthetic MRI diversity or employing 

domain adaptation strategies. 

The StoneNet-HC framework was 

specifically designed to address these challenges 

through a hybrid strategy that integrates a compact 

CNN (TinyResNet) for feature extraction with 

machine learning regressors such as Random Forest 

or Gradient Boosted Trees for stone counting. This 

design was chosen over fully end-to-end deep 

learning models due to several advantages. Tree-

based regressors provide interpretability by offering 

feature importance metrics that allow clinicians to 

understand which image characteristics drive 

predictions [15], [16]. They are also more robust with 

limited data, generalizing better on constrained 

datasets than larger neural networks that are prone 

to overfitting. Additionally, the hybrid approach 

offers computational efficiency by reducing GPU 

memory requirements and parameter count, making 

the system deployable in environments with modest 

hardware resources. The TinyResNet architecture 

itself was engineered for efficiency, outputting a 128-

dimensional embedding for 2D slices and allowing 

either averaging for speed or GRU-based fusion for 

temporal continuity, which improved Dice scores by 

2–3% for larger stones spanning multiple slices. 

Feature vectors extracted by the CNN were 

used as fixed embeddings for the regression models, 

trained independently after freezing CNN weights. 

Regularization strategies such as dropout (rate = 0.4) 

and L2 regularization (λ = 0.01) were applied during 

CNN training but not within the tree-based 

regressors, which use their own mechanisms to 

prevent overfitting. The overall optimization relied 

on a combined loss function balancing regression 

error and segmentation accuracy, with α = 0.3 

determined empirically as the optimal trade-off. At 

inference, the system processed either 2D or 3D 

inputs to generate predictions, followed by optional 

post-processing for clustered stones. This step, 

although increasing per-volume processing time by 

~0.4 seconds, significantly improved localization 

without interfering with clinical workflow since the 

total runtime remained under two seconds on 

NVIDIA A100 hardware. 

Extensive experiments confirmed the 

superiority of the hybrid pipeline. StoneNet-HC 

achieved the lowest MAE and highest Dice scores 

compared to baseline deep learning and radiomics-

based methods [6], [7], [9], [13], [18], [20]. Ablation 

studies demonstrated that eliminating the Random 

Forest regressor or excluding data augmentation led 

to significant performance drops, validating the 

necessity of both hybrid learning and synthetic 

augmentation. Error analysis revealed that most 

failures occurred in detecting very small stones (<2 

mm) or in distinguishing synthetic MRI signal voids 

near renal cysts, underscoring the value of 

incorporating higher-resolution inputs, multi-scale 

learning, and improved domain adaptation in future 

work. Despite these limitations, StoneNet-HC 
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consistently provided robust cross-modality 

performance, with strong generalization from CT to 

synthetic MRI, reflecting the strength of its modality-

invariant embeddings [17], [19], [20]. 

The clinical implications of these findings 

are significant. Precise estimation of stone burden 

plays a crucial role in guiding treatment decisions, 

ranging from conservative management for one or 

two stones, to lithotripsy or endoscopic treatment for 

moderate burdens, to percutaneous 

nephrolithotomy for clustered or numerous stones. 

By providing reliable and automated stone counts, 

StoneNet-HC has the potential to reduce radiologist 

workload, improve diagnostic consistency, and 

accelerate surgical planning. Compared to earlier 

studies that focused only on detection [7] or 

segmentation without enumeration [8], our 

framework advances the field by offering a count-

aware prediction pipeline that integrates 

classification, localization, and enumeration. 

Moreover, the simulation-based development of the 

SimMRI-Stones dataset provides a reproducible, 

scalable solution to the scarcity of labeled MRI data 

and opens opportunities for further community 

research [14]. 

Overall, StoneNet-HC represents a clinically 

relevant and computationally efficient approach that 

balances deep learning feature extraction with the 

interpretability and robustness of machine learning 

regressors. Its modular design, cross-modality 

performance, and scalability make it adaptable for 

deployment across institutions, including those with 

limited computational resources. While real MRI 

validation, 3D architectures, and explainability 

improvements remain important future directions, 

the contributions of this work—particularly the 

hybrid design, synthetic MRI dataset, and 

demonstrated clinical applicability—lay a solid 

foundation for next-generation AI systems in 

urology and radiology [4], [5], [10]–[12], [16], [21]–

[24]. 

 
Strengths and Limitations 

The major strength of this work lies in its hybrid 

framework, StoneNet-HC, which integrates a 

lightweight CNN (TinyResNet) with machine 

learning regressors, achieving both superior 

accuracy and interpretability. This design 

consistently outperformed end-to-end CNNs and 

traditional radiomics-based approaches by 

maintaining the lowest MAE and highest Dice scores 

across CT and synthetic MRI datasets. The use of 

synthetic MRI with algorithmically generated labels 

further reduced interobserver variability and 

provided perfectly reliable ground truth. The 

modular design, with its compact feature extractor 

and efficient regressors, also enabled faster training, 

lower GPU memory consumption, and clinical 

deployment on modest hardware, while retaining 

the ability to generalize across modalities. Clinically, 

StoneNet-HC demonstrates relevance by providing 

automated, accurate stone counts that can directly 

support treatment planning, thereby reducing 

radiologist workload and improving reporting 

consistency. 

 

Nevertheless, some limitations remain. The 

reliance on synthetic MRI data introduces concerns 

about generalizability, as real MRI scans exhibit 

greater variability and artifacts that may affect 

model performance. The slice-based 2D approach 

may underperform when stones extend across 

multiple slices or overlap, as full volumetric 

continuity is not fully captured. Additionally, 

sensitivity for detecting very small stones (<2 mm) 

was reduced, especially in low-dose CT or low-

contrast MRI settings. Interpretability gaps also 

persist, as the CNN feature embeddings remain 

largely opaque despite the use of tree-based 

regressors, and current explanations such as Grad-

CAM provide only limited insight. These limitations 

suggest that future work should focus on validating 

with real MRI data, extending to 3D or attention-

based models, enhancing detection of sub-millimeter 

stones, and integrating more advanced 

explainability frameworks such as SHAP or 

Transformer-based attention maps. 

 

Conclusion 
The described approach opens the path for future-

generation AI systems for urology that will facilitate 

complete automated stone reporting count, size, and 

anatomical site, along with treatment suggestion 

capabilities and radiologist-in-the-loop tools to 

enhance clinical workflow effectiveness. Through 

the use of simulation-based development, modular 

AI architecture, and cross-modality training, this 

methodology provides a scalable, interpretable 
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solution amenable to real-world use. Further, the 

imminent availability of the SimMRI-Stones dataset 

and open-sourcing of the StoneNet-HC codebase 

should further spur research in this area, especially 

in low-data and low-contrast imaging scenarios like 

MRI. 
 

Future Directions 

Beyond the improvements outlined, future research 

should explore the integration of additional imaging 

modalities such as ultrasound or dual-energy CT to 

enhance multi-source generalization. Moreover, 

transitioning from the current modular pipeline to a 

fully end-to-end deep learning framework trained 

on substantially larger, clinically diverse datasets 

could streamline inference, reduce manual pre-

processing, and improve adaptability across 

institutions.  
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